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Accidental overwriting of files or of memory regions belonging to other programs, 
browsing of personal files by superusers, Trojan horses, and viruses are examples of 
breakdowns in workstations and personal computers that would be significantly 
reduced by memory protection. Memory protection is the capability of an operating 
system and supporting hardware to delimit segments of memory, to control whether 
segments can be read from or written into. and to confine accesses of a program to its 
segments alone. The absence of memory protection in many operating systems today is 
the result of a bias toward a narrow definition of performance as maximum 
instruction-execution rate. A broader definition. including the time to get the job 
done, makes clear that cost of recovery from memory interference errors reduces 
expected performance. The mechanisms of memory protection are well understood, 
powerful, emcient, and elegant. They add to performance in the broad sense without 
reducing instruction execution rate. 
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Your program contains an error that overwrites an important input file dur- 

ing a test. Another error makes it calculate an index outside the subscript range 

of an array and incorrectly read a value from storage allocated to  another array. 

A program running concurrently with yours accidentally writes into your 

memory region, destroying your program and data files. An entry in a routing 

table is corrupted by a power failure a t  a network switching node; copies of the 

corrupted data propagate throughout the network, producing a crash that leaves 

you isolated. A system programmer with superuser privileges browses your 

private, read-only mail files. A program you borrow contains a Trojan horse 

that steals or erases some of your files. A program you obtained from a network 

bulletin board contains a virus that attacks your operating system and later 

erases some of your files. 
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These nightmarish examples illustrate breakdowns that can occur in the 

operation of computers when memory protection is inadequate or missing. 

Memory protection is the capability of an operating system and supporting 

hardware to delimit segments of memory, to control whether segments can be 

read from or written into, and to allow access to segments of a program rather 

than the whole of it. The protection can be extended t o  files stored on disks. 

Memory protection exemplifies the principle that programs should operate 

with the least privilege required to perform their tasks. Where memory protec- 

tion prevails, a program cannot write into an input file, refer outside a segment 

containing a particular array, or refer outside its own set of segments. A power 

failure cannot write into a read-only table, a superuser cannot automatically 

override another user's access specifications, a suspected Trojan horse cannot 

access outside a limited set of segments during a test, and a virus cannot write a 

copy of itself into any of a n  operating system's segments. 

The need for memory protection was apparent to the early designers of 

computer systems. In the late 1950s, the Atlas computer at the University of 

Manchester allowed several independent programs to reside simultaneously in 

the main memory and included mechanisms that prevented their interfering with 

each other. Early time-sharing systems experimented with paged virtual 

memory (IBM 360/67 in 1964), file access protection (MIT's CTSS in 1965), vir- 

tual machines (IBM M44/44X in 1966), segmented virtual memory (Honeywell 

hlultics in 1968, Burroughs B6700 in 1970), and capability-based addressing 



88.17 ( 2 1  July 1988) Memory Protect ion / 3 

(Cambridge CAP computer in 1977). The concepts and design principles of 

these early systems have been incorporated in today’s large mainframe operating 

systems. Excellent accounts of the various developments are provided have been 

given by Jerry Saltzer and Michael Schroeder (1) , Maurice Wilkes (2). Elliott 

Organick ( 3 , 4 ) ,  and Robert Fabry ( 5 ) .  

Few of the penetration and virus problems reported in the news would be 

possible in machines that use these old memory protection principles ( 6 ) .  Yet 

many of the small operating systems today, such as UNIXTM and the PCs in 

widest use, contain relatively few or none of the memory protection mechanisms 

and are easily subverted. Many of the microprocessors in modern workstations 

and PCs, such as the Intel 80386 and Motorola 68000, contain the requisite 

hardware, but the operating system simply ignores it. How has this situation 

arisen? 

A major reason for the disappearance of the old concern about memory pro- 

tection is a bias toward performance, defined as the sustained instruction- 

execution rate of a machine. Designers of operating systems and hardware sim- 

ply omit any mechanisms that do not, in their assessment, contribute directly to  

performance in this narrow sense. Not only do memory protection mechanisms 

not increase the instruction-execution rate of a machine, but in the poorer imple- 

mentations they noticeably retard it. 

In the past several years, hoowever, a major change in attitude has taken 

place among computer users. People regularly trust valuable information to 
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computer files, and years of work can be destroyed in a few milliseconds. It is 

now becoming fashionable to demand that computer systems be dependable and 

trustworthy as well as fast. When performance is defined in a broad sense -- 

minimizing the time to get a job done -- the possible loss of files and subsequent 

delays in recovering from the loss can be seen as a serious degradation of 

expected performance. 

In what follows I will describe the main parts of a memory protection 

mechanism in an attempt to convey the elegance and power of the design. As we 

will see, there need be no significant loss of speed, because most of the access 

checking can be done by the hardware in parallel with the main computation. 

Most computers consist of processors, fast main memory, and disk memory. 

The addressing interface between processor and main memory allows for two 

types of commands, “read A ” and “write A .” To read, the processor places 

address A into the address register and signals the memory: the memory copies 

the value from address A into the data register and returns an acknowledge sig- 

nal to the processor. To write, the processor places a value into the data register 

and address A into the address register, then signals the memory; the memory 

replaces the contents of address A with the value and signals an acknowledg- 

ment to  the processor. If the memory detects an error during either of these 

operations. it returns a fault signal rather than an acknowledgment to  the pro- 

cessor. 
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Most computations are composed of parts - the various program modules 

and data files -- which are stored in the disk memory as files. When one of these 

parts is loaded into main memory, it is called a segment. A segment can be 

described with two numbers, B and L ; B is the base or starting address of the 

segment, and L is the length; the segment occupies addresses 

B , B + 1 ,  * . .  , B + L - 1 .  

When a segment is present in main memory, its descriptor ( B  ,L ) can.be 

stored in a register within the addressing mechanism and used in the following 

way. The read and write commands are automatically interpreted relative to the 

base address in the descriptor register; thus “read A ” is actually applied to 

address B + A  . While forming address B + A  , the memory interface also checks 

that A is within the span of the segment -- that is, that OGA < L  ; if not, a 

range error is signaled, and the processor is not allowed to complete the access to 

address B + A  . 

The descriptor can be extended to include a presence bit P , set to 1 when a 

copy of the segment is loaded in main memory and otherwise to 0. If the seg- 

ment is marked as not present the hardware signals a missing segment fault that 

interrupts the addressing process and brings into execution a program to locate 

the file in the disk system, load it, and set the presence bit of the descriptor to 1 .  

This basic mechanism provides a processor with read and write access to 

exactly one segment, a mode of operation useful when all parts of a computation 

are stored in a single segment. It prevents a processor from reading or writing 
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regions of memory assigned to any other computation. In practice, however, 

there is a need to protect the separate parts of a computation - for example, 

when one of the parts is a borrowed program that might contain a Trojan horse 

or is a new program module that has not been fully tested. The mechanism 

must be refined to allow a set of several descriptors to be associated with a com- 

putation. 

To do this, each descriptor is marked with a unique key, and all the keyed 

descriptors are stored in a table. When given a key, the addressing hardware 

searches the descriptor table for an entry with that key. If the search succeeds, 

the particular P , B , and L values are indicated as above. High speed associa- 

tive memories can be used to hold the descriptor tables so, that the search time 

is small compared to the time of a read or write command. Note that the keys 

do not change as the segment is moved between the main and disk memories 

(differing presence bit values), relocated within the main memory (differing base 

values), or altered in size (differing length values). Thus a program’s design is 

independent of the details of physical storage, and a major source of program- 

ming errors is avoided (7). 

How does a computation generate the keys corresponding to  the various 

segments? Associated with the computation is a segment table that contains a 

list of segment accessors, each of which consists of an access code (whose bits 

enable reading and writing) and a key that matches one of the descriptors. To 

use this table, the processor must specify the segment within which a given 
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address falls; thus “read N , A ” means read the value in address A of segment 

N . Using the accessor at position N of the segment table, the addressing 

hardware checks that reading (or writing) is permitted by the access code and if 

so initiates the search of the descriptor table; the rest is the same as the process 

of using a descriptor outlined above. As before, high speed associative memory 

can be used to  keep these searches to a negligible fraction of the time for reading 

and writing. The full mechanism is summarized in the accompanying box. 

This design handles shared segments elegantly. There is no requirement 

that the computations sharing a given segment assign the same segment number 

to  it. Program code modules, which are read-only, are the most common candi- 

dates for sharing. All the user sessions employing the same text editor, for 

example, can have accessors containing copies of the key for the descriptor of the 

editor’s instruction code segment. The editor obtains access to text files by 

referring to  separate segments, and the numbers of those segments can be passed 

to the editor as parameters. Because it is not necessary to have more than one 

copy of the editor’s code segment loaded in main memory, substantial savings of 

memory are possible in multi-user systems. 

A simple extension of this mechanism increases its power substantially. A 

computation involving a set of segments can be regarded as a unit. For exam- 

ple, the set of programs for opening, closing, reading, and writing files can be 

encapsulated in a package along with segments containing private information 

about the status and location of files in the disk storage system. A call on any 
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one of these four programs automatically switches the computation so that they 

operate with their own segment table, which is distinct from the segment table 

of the caller. The ability to encapsulate a package substantially increases its 

reliability, because none of the private data can be consulted or modified by any 

programs other than those authorized to do so. Such a mechanism should 

prevent viral infection of package components. 

To implement this extension, a computation number C stored in the pro- 

cessor is used to inform the addressing mechanism which segment table should 

be used. An accessor for C consists of a code enabling “call” and the key “C .” 

A segment number, say N , corresponding to an accessor for C is allocated in 

the segment table of a computation authorized to  call C ; then the command 

“call N ” will automatically invoke the entry procedure of C , and the processor 

will begin using the segment table to C . Fabry gives a full account of this 

mechanism ( 5 ) .  

Where do the entries in the segment tables come from in the first place? 

They come from the file system. Each user owns a tree of directories. Each 

directory, stored as a file on a disk, contains entries that point to other files by 

giving their unique keys. Each entry also contains a field that points to an 

access control list specifying names and access codes for that file. Thus, when 

one of my computations attempts to open a file and load it into a memory seg- 

ment, the operating system checks whether my name is on the access list of that 

file; if so, it creates an accessor with that code whose key is the same as the file’s 
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unique key. 

I have only scratched the surface of what can be done with the design out- 

lined here. My intention has been simply to exhibit the design principles of 

memory protection, and to suggest that they can be implemented with negligible 

impact on instruction execution speed. The added benefits -- significantly 

increased protection against faults and errors, reduction in exposure to Trojan 

horses and viruses, and resistance against unauthorized access to  one’s files - are 

well worth the additional design expense. 

Scientists and engineers should be much more forceful in expressing their 

concerns about memory protection, so that future generations of workstations 

and personal computers willbe dependable and secure as well as fast. 
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Addressing for Memory Protection 

Memory Protection,’ll 

The addressing mechanism for protected segments contains two levels of mappings that 

transform a request like “read address A of segment N of computation C ” into a reference to 

the proper memory location B + A  . 

The upper level consists of segment tables, such as C 1 and C 2 ,  attached to computations 

themselves; it associates a segment number N (1, 2, 3, 4,  ...) with an access code and unique key 

for each segment. Access code R in the figure enables reading, and access code R W enables both 

reading and  writing. A shared segment with key K can have different numbers and different 

access codes in different computations. 

The  lower level consists of a descriptor table attached to the memory; it records presence, 

base, and length descriptors for each segment. The presence bit P is 1 if a copy of the segment 

is in main memory; if P =0, the segment is in disk memory and must be located and loaded in 

main memory before it can be used. The base B gives the starting address of a loaded segment. 

The length L gives the  number of consecutive addresses occupied by the segment. The last 

address in the segment is thus B +L -1. Segments can be moved between levels of memory, relo- 

cated within main memory, or  changed in length without changing segment numbers, access 

codes, o r  keys or otherwise disturbing any component of a computation. 

To read from a segment, a processor operating on behalf of computation C generates a 

request “read N , A  .” The addressing mechanism looks a t  entry N in the segment table for C ;  

if read access is permitted, it  searches the descriptor table for K ; it then requests memory to  

read from B + A  , provided tha t  O<A <L . These steps can be completed in a negligible fraction 

of the time the memory takes to  read. If any of the checks embedded in them fails, the address- 

ing system stops the processor with a n  error signal. 
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